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Summary 

From the 
1 
H NMR studies of various 2'-substituted 2'-deoxyadenosines, 

a relationship between electronegativity of substituents and conformation 

of the sugar moiety was elucidated. 

The difference on the structure of double-stranded DNA and RNA is believed 

to originate in the conformation of sugar moiety. 
1 

In fact the substitution 

of 2'-OH group of ribopolynucleotides by groups such as N3, NH2 and halogens 

affects the conformation and the thermal stability. 
2 

In this communication 

we wish to report results of 
1 
H NMR studies of 2'-substituted 2'-deoxyadenosine 

(l-9) and a linear relationship between electronegativity of substituents and 

conformation of the ribose moiety. 

Nucleosides were synthesized as reported previously3 and 
1 
H NMR spectra 

were measured at 100 MHz with a JEOL FX-100 pulse Fourier transform spectrometer 

locked on deuterium. Samples were dissolved in 

DMSO-d6 and a drop of D20 was added. The temp- 

erature of a probe was held at 25O. Chemical 

shifts were relative to internal TMS. 
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The proton chemical shifts of 2'-substituted 1: X= H 4 : X= OCH, 7: X= Cl 

2'-deoxyadenosines are given in Table I. 
2:X=0" 5:X=N, 8:XdBr 
3: X=NH,6:X=F 9:x=1 
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Table I 
1 
H Chemical shifts of 2'-substituted 2'-deoxyadenosines 

Compound 8-H 

1 8.33 

2 8.34 

3 8.31 

4 8.34 

5 8.40 

6 8.36 

7 8.42 

8 8.40 

9 8.39 

NH2 2-H 

8.14 

8.14 

8.14 

8.14 

8.17 

8.16 

8.16 

8.15 

8.16 

7.29 

7.32 

7.33 

7.33 

7.36 

7.34 

7.39 

7.37 

7.38 

l'-H 

6.35 

5.88 

5.68 

6.00 

6.08 

6.24 

6.17 

6.25 

6.30 

3'-OH 5'-OH 2'-H 3'-H 4'-H 5'-H 

5.29 5.22 
2.25 
2.74 4.41 3.89 3.57 

5.16 5.40 4.61 4.16 3.99 3.57 

5.25 5.39 4.37 3.98 3.65 

6.04 5.28 4.60 3.65 

5. JO 5.23 5.44 4.49 4.05 3.67 

5.98 5.44 5.97 4.36 4.08 3.65 

6.01 5.38 5.16 4.30 4.09 3.67 

6.07 5.13 5.13 4.10 3.64 

The resonance positions of the base protons are almost unaffected by sub- 

stitution at the 2'-position. On the other hand there is a fairly large dis- 

tribution in the chamical shifts of the sugar proton resonances. There seems 

to be a tendency following the order of the electronegativity of the substitu- 

ents. When we plotted electronegativity parameter 1 against chemical shifts of 

H-l', a linear relationship was observed, except for 2'-F and 2'-NH2 compounds 

(Fig. la). F atom has extremely large negativity and the NH2 group may be pro- 

tonated in this condition. 

In Table II proton spin-spin coupling constants are given together with 

% of N conformer calculated by method of Altona and Sundaralingam. 
4 

So far as 

to the halogen and azido derivatives, the population of the N conformaer de- 

creases in the order of F>N3> C17Br> I. It corresponds to the electro- 

negativity of these substituents and also to the atomic radii of these groups. 

It seems to be reasonable that the bulky groups are apt to come to the equator- 

ial position of the sugar plane, which results in increase of the S conformer. 

However, the compounds substituted by OH, OMe, N3 and NH2, which are more bulk- 

ier than H,take more dominantly the N conformer than 2'-deoxyadenosine. More- 
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over, even F atom, which is only 0.15 A larger than H atom, has extremely 

large proportion of N conformer. Therefore, it is difficult to ascribe only 

the steric hindrance of the substituent groups to the origin of conformational 

change of the sugar moiety. When we plotted %N against Ivalue (Fig. lb), there 

is a relatively good correlation between % N and lvalue of F, N3, Br, Cl and 

I substituted nucleosides. The OMe compound deviates slightly and OH(ribo) and 

NH2 compounds deviate largely from the straight line. On the other hand H (de- 

oxyribo) compound deviates largely to the opposite side of the line. 

If we assume a polar effect of 2'-substituents due to C-X bond polarization, 

the magnitude of the effect might be in the order of electronegativity of the 

substituents. Therefore, the dipole moment of the sugar moiety should be sub- 

jected to change to adopt more energy-less form. This effect is noteworthy in 

the case of 2'-F compound. Presumably because of large electronegativity of 

the F atom, the conformation of this compound takes an extremely N-rich as high 

as 76 %. Groups such as N3, Cl, Br and I make the conformations of 38-7 ,% of 

N conformers. The slight deviation of OMe compound may be due to its bulkiness. 

Deviations of NH2 and OH compound might be ascribed to hydrogen-bonding with 

solvent molecules through their dissociable H atoms. 2'-H compound (deoxyribo) 

is rather exceptional, becuase C 2' -H bond polarization must be in an opposite 

direction as compared to other electronegative substituents. 

Thus, we might be able to draw a conclusion that the conformation of the 

Fig. 1 (a) 
6.4. h 

. H ‘2 Br F . 
l 

6.2 - v\ 
c’ “\ N:, 

6.0 . 
y\\ 0th 

t 

OH’\ 
5.6 - 

80 

s_ 60 
ii 
0’ 
‘E 40 
s 
z 

( b) 

F, 
t / 

I 

0 
2.0 2.5 3.0 

2 



4076 No. 42 

Table II Vicinal 
11 
H- H coupling constants (Hz) and conformation of 

the sugar moiety of 2'-substituted 2'-deoxyadenosines 

Compound 
Jl121 J2'3' J3'4' J1t2,+ J3m4, Population of 

N conformer (%I 

1 
6.2 3.0 
7.7 5.6 

19 

2 6.1 5.1 3.1 9.2 36 

3 7.5 21 

4 5.5 42 

5 5.9 38 

6 3.1 4.3 6.0 9.1 67 

7 7.2 4.8 2.7 9.9 24 

8 7.4 4.7 2.4 9.8 22 

9 8.8 4.5 J 

sugar moiety in adenine nucleosides could be predicted nicely by electro- 

negativity of the 2'-substituents. Furthermore this relationship must be ap- 

plicable to other nucleosides having pentofuranose moieties. Studies along 

this line is in progress in our laboratory. 
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